Reconstruction of Hydrothermal Processes in the Cyprus Type Fe-Cu-Zn Deposits of the Italian Northern Apennines: Results of Combined Fluid Inclusion Microthermometry, SEM-CL Imaging and Trace Element Analyses by LA-ICP-MS

Quartz from the stockwork zone of various Cyprus type volcanogenic massive sulfide deposits (Boccassuolo, Reppia, Campegli, Bargone and Vigonzano) from the unmetamorphosed, Jurassic Northern Apennine ophiolites was studied in order to provide details on the submarine hydrothermal conditions and the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Minerals (Basel) 2021-02, Vol.11 (2), p.165
Hauptverfasser: B. Kiss, Gabriella, Bendő, Zsolt, Garuti, Giorgio, Zaccarini, Federica, Király, Edit, Molnár, Ferenc
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Quartz from the stockwork zone of various Cyprus type volcanogenic massive sulfide deposits (Boccassuolo, Reppia, Campegli, Bargone and Vigonzano) from the unmetamorphosed, Jurassic Northern Apennine ophiolites was studied in order to provide details on the submarine hydrothermal conditions and the characteristics for ore formation. Our detailed SEM-CL investigation of quartz contributed to a robust characterization and interpretation of primary fluid inclusions and microthermometry data. SEM-CL imaging was also useful for reconstructing the consecutive steps of quartz precipitation. The determination of trace element contents according to growth zoning in quartz by LA-ICP-MS constrained the compositional variations of parent fluids during the hydrothermal activity. A continuously cooling fluid regime characterized each studied volcanogenic massive sulfide (VMS) occurrence although the minimum formation temperatures were different (Bargone: 110–270 °C; Boccassuolo: 60–360 °C; Campegli: 110–225 °C; Reppia: 50–205 °C; Vigonzano: 260–330 °C), the range of temperature most probably depends on the original position of sampling in relation to the centers of the hydrothermal systems. Compositional changes are reflected by variations in the methane content (0.13–0.33 mol/kg) and salinity (2.6–9.3 NaCl equiv. wt. %) in the fluid inclusions of quartz and calcite as well as a changeable Al content (11–1526 ppm) in quartz. This study demonstrates that the combined use of SEM-CL imaging and LA-ICP-MS analyses, coupled with fluid inclusion microthermometry, can constrain the different fluid conditions of ore forming and the barren stages of evolving submarine hydrothermal systems.
ISSN:2075-163X
2075-163X
DOI:10.3390/min11020165