Plasmonic imaging of the layer-dependent electrocatalytic activity of two-dimensional catalysts

Studying the localized electrocatalytic activity of heterogeneous electrocatalysts is crucial for understanding electrocatalytic reactions and further improving their performance. However, correlating the electrocatalytic activity with the microscopic structure of two-dimensional (2D) electrocatalys...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2022-12, Vol.13 (1), p.7869-7869, Article 7869
Hauptverfasser: Zhao, Xiaona, Zhou, Xiao-Li, Yang, Si-Yu, Min, Yuan, Chen, Jie-Jie, Liu, Xian-Wei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Studying the localized electrocatalytic activity of heterogeneous electrocatalysts is crucial for understanding electrocatalytic reactions and further improving their performance. However, correlating the electrocatalytic activity with the microscopic structure of two-dimensional (2D) electrocatalysts remains a great challenge due to the lack of in situ imaging techniques and methods of tuning structures with atomic precision. Here, we present a general method of probing the layer-dependent electrocatalytic activity of 2D materials in situ using a plasmonic imaging technique. Unlike the existing methods, this approach was used to visualize the surface charge density and electrocatalytic activity of single 2D MoS 2 nanosheets, enabling the correlation of layer-dependent electrocatalytic activity with the surface charge density of single MoS 2 nanosheets. This work provides insights into the electrocatalytic mechanisms of 2D transition metal dichalcogenides, and our approach can serve as a promising platform for investigating electrocatalytic reactions at the heterogeneous interface, thus guiding the rational design of high-performance electrocatalysts. Probing the localized electrocatalytic activity of heterogeneous electrocatalysts is crucial. Here, the authors propose a method of imaging the surface charge density and electrocatalytic activity of single two-dimensional electrocatalyst nanosheets.
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-022-35633-3