Novel Numerical Scheme for Singularly Perturbed Time Delay Convection-Diffusion Equation

This paper deals with numerical treatment of singularly perturbed parabolic differential equations having large time delay. The highest order derivative term in the equation is multiplied by a perturbation parameter ε, taking arbitrary value in the interval 0,1. For small values of ε, solution of th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advances in Mathematical Physics 2021-02, Vol.2021, p.1-13
Hauptverfasser: Woldaregay, Mesfin Mekuria, Aniley, Worku Tilahun, Duressa, Gemechis File
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper deals with numerical treatment of singularly perturbed parabolic differential equations having large time delay. The highest order derivative term in the equation is multiplied by a perturbation parameter ε, taking arbitrary value in the interval 0,1. For small values of ε, solution of the problem exhibits an exponential boundary layer on the right side of the spatial domain. The properties and bounds of the solution and its derivatives are discussed. The considered singularly perturbed time delay problem is solved using the Crank-Nicolson method in temporal discretization and exponentially fitted operator finite difference method in spatial discretization. The stability of the scheme is investigated and analysed using comparison principle and solution bound. The uniform convergence of the scheme is discussed and proven. The formulated scheme converges uniformly with linear order of convergence. The theoretical analysis of the scheme is validated by considering numerical test examples for different values of ε.
ISSN:1687-9120
1687-9139
DOI:10.1155/2021/6641236