Atmospheric correction of HJ1-A/B images and the effects on remote sensing monitoring of cyanobacteria bloom

The HJ-1A/B satellite offers free images with high spatial and temporal resolution, which are effective for dynamically monitoring cyanobacteria blooms. However, the HJ-1A/B satellite also receives distorted signals due to the influence of atmosphere. To acquire accurate information about cyanobacte...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the International Association of Hydrological Sciences 2015-05, Vol.368 (368), p.69-74
Hauptverfasser: Ma, H, Guo, S, Hong, X, Zhou, Y
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The HJ-1A/B satellite offers free images with high spatial and temporal resolution, which are effective for dynamically monitoring cyanobacteria blooms. However, the HJ-1A/B satellite also receives distorted signals due to the influence of atmosphere. To acquire accurate information about cyanobacteria blooms, atmospheric correction is needed. HJ-1A/B images were atmosphere corrected using the FLAASH atmospheric correction model. Considering the quantum effect within a certain wavelength range, a spectral response function was included in the process. Then the model was used to process HJ-1A/B images, and the NDVI after atmospheric correction was compared with that before correction. The standard deviation improved from 0.13 to 0.158. Results indicate that atmospheric correction effectively reduces the distorted signals. Finally, NDVI was utilized to monitor the cyanobacteria bloom in Donghu Lake. The accuracy was enhanced compared with that before correction.
ISSN:2199-899X
0144-7815
2199-8981
2199-899X
DOI:10.5194/piahs-368-69-2015