Nanopharmaceuticals for eye administration: sterilization, depyrogenation and clinical applications
As an immune-privileged target organ, the eyes have important superficial and internal barriers, protecting them from physical and chemical damage from exogenous and/or endogenous origins that would cause injury to visual acuity or even vision loss. These anatomic, physiological and histologic barri...
Gespeichert in:
Veröffentlicht in: | Biology (Basel, Switzerland) Switzerland), 2020-10, Vol.9 (10), p.1-18 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | As an immune-privileged target organ, the eyes have important superficial and internal barriers, protecting them from physical and chemical damage from exogenous and/or endogenous origins that would cause injury to visual acuity or even vision loss. These anatomic, physiological and histologic barriers are thus a challenge for drug access and entry into the eye. Novel therapeutic concepts are highly desirable for eye treatment. The design of an efficient ocular drug delivery system still remains a challenge. Although nanotechnology may offer the ability to detect and treat eye diseases, successful treatment approaches are still in demand. The growing interest in nanopharmaceuticals offers the opportunity to improve ophthalmic treatments. Besides their size, which needs to be critically monitored, nanopharmaceuticals for ophthalmic applications have to be produced under sterilized conditions. In this work, we have revised the different sterilization and depyrogenation methods for ophthalmic nanopharmaceuticals with their merits and drawbacks. The paper also describes clinical sterilization of drugs and the outcomes of inappropriate practices, while recent applications of nanopharmaceuticals for ocular drug delivery are also addressed.
The authors acknowledge the sponsorship received from the Portuguese Science and Technology Foundation, Ministry of Science and Education (FCT/MEC) through national funds, co-financed by FEDER, under the Partnership Agreement PT2020 for the project UIDB/04469/2020 (strategic fund) granted to EBS, the National Council for Scientific and Technological Development (CNPq), Brazil, for the project 425271/2016-1 granted to M.V.C., and the Coordenação Aperfeiçoamento de Pessoal de Nivel Superior (CAPES) and Fundação de Ámparo à Pesquisa do Estado de Sergipe (FAPITEC) (88887.159533/2017-00), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq301964/2019-0 Chamada 06/2019, and Chamada CNPq nº 01/2019), granted to P.S. |
---|---|
ISSN: | 2079-7737 2079-7737 |
DOI: | 10.3390/biology9100336 |