Sub-Riemannian Geometry of Curves and Surfaces in Roto-Translation Group Associated with Canonical Connection

The aim of this paper is to obtain the sub-Riemannian properties of the roto-translation group RT. At the same time, we compute the sub-Riemannian limits of Gaussian curvature associated with two kinds of canonical connections for a C2-smooth surface in the roto-translation group away from character...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematics (Basel) 2024-06, Vol.12 (11), p.1683
Hauptverfasser: Zhang, Han, Liu, Haiming
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The aim of this paper is to obtain the sub-Riemannian properties of the roto-translation group RT. At the same time, we compute the sub-Riemannian limits of Gaussian curvature associated with two kinds of canonical connections for a C2-smooth surface in the roto-translation group away from characteristic points and signed geodesic curvature associated with two kinds of canonical connections for C2-smooth curves on surfaces. Based on these results, we obtain a Gauss-Bonnet theorem in the RT.
ISSN:2227-7390
2227-7390
DOI:10.3390/math12111683