Induced sensorimotor brain plasticity controls pain in phantom limb patients

The cause of pain in a phantom limb after partial or complete deafferentation is an important problem. A popular but increasingly controversial theory is that it results from maladaptive reorganization of the sensorimotor cortex, suggesting that experimental induction of further reorganization shoul...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2016-10, Vol.7 (1), p.13209-13209, Article 13209
Hauptverfasser: Yanagisawa, Takufumi, Fukuma, Ryohei, Seymour, Ben, Hosomi, Koichi, Kishima, Haruhiko, Shimizu, Takeshi, Yokoi, Hiroshi, Hirata, Masayuki, Yoshimine, Toshiki, Kamitani, Yukiyasu, Saitoh, Youichi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The cause of pain in a phantom limb after partial or complete deafferentation is an important problem. A popular but increasingly controversial theory is that it results from maladaptive reorganization of the sensorimotor cortex, suggesting that experimental induction of further reorganization should affect the pain, especially if it results in functional restoration. Here we use a brain–machine interface (BMI) based on real-time magnetoencephalography signals to reconstruct affected hand movements with a robotic hand. BMI training induces significant plasticity in the sensorimotor cortex, manifested as improved discriminability of movement information and enhanced prosthetic control. Contrary to our expectation that functional restoration would reduce pain, the BMI training with the phantom hand intensifies the pain. In contrast, BMI training designed to dissociate the prosthetic and phantom hands actually reduces pain. These results reveal a functional relevance between sensorimotor cortical plasticity and pain, and may provide a novel treatment with BMI neurofeedback. Pain in a phantom limb after limb deafferentation may be due to maladaptive sensorimotor representation. Here the authors find that sensorimotor plasticity induced by BMI training with the phantom hand, contrary to expectation, increased pain while dissociating prosthetic movements from the phantom arm relieved the pain.
ISSN:2041-1723
2041-1723
DOI:10.1038/ncomms13209