SIMULTANEOUS DETERMINATION OF A SOURCE TERM AND DIFFUSION CONCENTRATION FOR A MULTI-TERM SPACE-TIME FRACTIONAL DIFFUSION EQUATION

An inverse problem of determining a time dependent source term along with diffusion/temperature concentration from a non-local over-specified condition for a space-time fractional diffusion equation is considered. The space-time fractional diffusion equation involve Caputo fractional derivative in s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical modelling and analysis 2021-07, Vol.26 (3), p.411-431
Hauptverfasser: Malik, Salman A., Ilyas, Asim, Samreen, Arifa
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:An inverse problem of determining a time dependent source term along with diffusion/temperature concentration from a non-local over-specified condition for a space-time fractional diffusion equation is considered. The space-time fractional diffusion equation involve Caputo fractional derivative in space and Hilfer fractional derivatives in time of different orders between 0 and 1. Under certain conditions on the given data we proved that the inverse problem is locally well-posed in the sense of Hadamard. Our method of proof based on eigenfunction expansion for which the eigenfunctions (which are Mittag-Leffler functions) of fractional order spectral problem and its adjoint problem are considered. Several properties of multinomial Mittag-Leffler functions are proved.
ISSN:1392-6292
1648-3510
DOI:10.3846/mma.2021.11911