Finding the Conjectured Sequence of Largest Small n-Polygons by Numerical Optimization
LSP(n), the largest small polygon with n vertices, is a polygon with a unit diameter that has a maximal of area A(n). It is known that for all odd values n≥3, LSP(n) is a regular n-polygon; however, this statement is not valid even for values of n. Finding the polygon LSP(n) and A(n) for even values...
Gespeichert in:
Veröffentlicht in: | Mathematical and computational applications 2022-06, Vol.27 (3), p.42 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | LSP(n), the largest small polygon with n vertices, is a polygon with a unit diameter that has a maximal of area A(n). It is known that for all odd values n≥3, LSP(n) is a regular n-polygon; however, this statement is not valid even for values of n. Finding the polygon LSP(n) and A(n) for even values n≥6 has been a long-standing challenge. In this work, we developed high-precision numerical solution estimates of A(n) for even values n≥4, using the Mathematica model development environment and the IPOPT local nonlinear optimization solver engine. First, we present a revised (tightened) LSP model that greatly assists in the efficient numerical solution of the model-class considered. This is followed by results for an illustrative sequence of even values of n, up to n≤1000. Most of the earlier research addressed special cases up to n≤20, while others obtained numerical optimization results for a range of values from 6≤n≤100. The results obtained were used to provide regression model-based estimates of the optimal area sequence {A(n)}, for even values n of interest, thereby essentially solving the LSP model-class numerically, with demonstrably high precision. |
---|---|
ISSN: | 2297-8747 1300-686X 2297-8747 |
DOI: | 10.3390/mca27030042 |