Enhancing the compost maturation of swine manure and rice straw by applying bioaugmentation
Microorganisms capable of decomposing cellulose, xylan, starch and protein were individually isolated from swine manure compost and soil in this study. The correlations with pH, carbon source concentration, C/N ratio and enzyme activity among these isolated microorganisms were also investigated. Fur...
Gespeichert in:
Veröffentlicht in: | Scientific reports 2021-03, Vol.11 (1), p.6103-6103, Article 6103 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Microorganisms capable of decomposing cellulose, xylan, starch and protein were individually isolated from swine manure compost and soil in this study. The correlations with pH, carbon source concentration, C/N ratio and enzyme activity among these isolated microorganisms were also investigated. Furthermore, the effect of additional inoculation in the compost was studied by measuring variations in the C/N ratio, enzyme activity and compost maturation rate. The inoculated microorganisms used in this study included four bacterial isolates and one commercial microorganism
Phanerochaete chrysosporium
. The results indicated that the isolated
Kitasatospora phosalacinea
strain C1, which is a cellulose-degraded microorganism, presented the highest enzyme activity at 31 ℃ and pH 5.5, while the C/N ratio was 0.8%. The isolated xylan-degraded microorganism
Paenibacillus glycanilyticus
X1 had the highest enzyme activity at 45 ℃ and pH 7.5, while the C/N ratio was 0.5%. The starch-degraded microorganism was identified as
Bacillus licheniformis
S3, and its highest enzyme activities were estimated to be 31 ℃ and pH 7.5 while the C/N ratio was 0.8%. The highest enzyme activity of the protein-degraded microorganism
Brevinacillus agri
E4 was obtained at 45 ℃ and pH 8.5, while the C/N ratio was 1.0%. The rate of temperature increase in the compost inoculated with
P. chrysosporium
was only higher than that of the compost without inoculation, and its compost maturation level was also lower than that of other composts with additional inoculation. The optimal initial C/N ratio of the compost was 27.5 and the final C/N ratio was 18.9. The composting results also indicated that the secondary inoculation would benefit compost maturation, and the lowest final C/N ratio of 17.0 was obtained. |
---|---|
ISSN: | 2045-2322 2045-2322 |
DOI: | 10.1038/s41598-021-85615-6 |