COVID-19 Rumor Detection on Social Networks Based on Content Information and User Response

The outbreak of COVID-19 has caused a huge shock for human society. As people experience the attack of the COVID-19 virus, they also are experiencing an information epidemic at the same time. Rumors about COVID-19 have caused severe panic and anxiety. Misinformation has even undermined epidemic prev...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Frontiers in physics 2021-09, Vol.9, Article 763081
Hauptverfasser: Yang, Jianliang, Pan, Yuchen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The outbreak of COVID-19 has caused a huge shock for human society. As people experience the attack of the COVID-19 virus, they also are experiencing an information epidemic at the same time. Rumors about COVID-19 have caused severe panic and anxiety. Misinformation has even undermined epidemic prevention to some extent and exacerbated the epidemic. Social networks have allowed COVID-19 rumors to spread unchecked. Removing rumors could protect people's health by reducing people's anxiety and wrong behavior caused by the misinformation. Therefore, it is necessary to research COVID-19 rumor detection on social networks. Due to the development of deep learning, existing studies have proposed rumor detection methods from different perspectives. However, not all of these approaches could address COVID-19 rumor detection. COVID-19 rumors are more severe and profoundly influenced, and there are stricter time constraints on COVID-19 rumor detection. Therefore, this study proposed and verified the rumor detection method based on the content and user responses in limited time CR-LSTM-BE. The experimental results show that the performance of our approach is significantly improved compared with the existing baseline methods. User response information can effectively enhance COVID-19 rumor detection.
ISSN:2296-424X
2296-424X
DOI:10.3389/fphy.2021.763081