Superconvergence of semidiscrete finite element methods for bilinear parabolic optimal control problems

In this paper, a semidiscrete finite element method for solving bilinear parabolic optimal control problems is considered. Firstly, we present a finite element approximation of the model problem. Secondly, we bring in some important intermediate variables and their error estimates. Thirdly, we deriv...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of inequalities and applications 2017-03, Vol.2017 (1), p.62-14, Article 62
Hauptverfasser: Tang, Yuelong, Hua, Yuchun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, a semidiscrete finite element method for solving bilinear parabolic optimal control problems is considered. Firstly, we present a finite element approximation of the model problem. Secondly, we bring in some important intermediate variables and their error estimates. Thirdly, we derive a priori error estimates of the approximation scheme. Finally, we obtain the superconvergence between the semidiscrete finite element solutions and projections of the exact solutions. A numerical example is presented to verify our theoretical results.
ISSN:1025-5834
1029-242X
1029-242X
DOI:10.1186/s13660-017-1334-y