A Robust Rigid Registration Framework of 3D Indoor Scene Point Clouds Based on RGB-D Information
Rigid registration of 3D indoor scenes is a fundamental yet vital task in various fields that include remote sensing (e.g., 3D reconstruction of indoor scenes), photogrammetry measurement, geometry modeling, etc. Nevertheless, state-of-the-art registration approaches still have defects when dealing...
Gespeichert in:
Veröffentlicht in: | Remote sensing (Basel, Switzerland) Switzerland), 2021-12, Vol.13 (23), p.4755 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Rigid registration of 3D indoor scenes is a fundamental yet vital task in various fields that include remote sensing (e.g., 3D reconstruction of indoor scenes), photogrammetry measurement, geometry modeling, etc. Nevertheless, state-of-the-art registration approaches still have defects when dealing with low-quality indoor scene point clouds derived from consumer-grade RGB-D sensors. The major challenge is accurately extracting correspondences between a pair of low-quality point clouds when they contain considerable noise, outliers, or weak texture features. To solve the problem, we present a point cloud registration framework in view of RGB-D information. First, we propose a point normal filter for effectively removing noise and simultaneously maintaining sharp geometric features and smooth transition regions. Second, we design a correspondence extraction scheme based on a novel descriptor encoding textural and geometry information, which can robustly establish dense correspondences between a pair of low-quality point clouds. Finally, we propose a point-to-plane registration technology via a nonconvex regularizer, which can further diminish the influence of those false correspondences and produce an exact rigid transformation between a pair of point clouds. Compared to existing state-of-the-art techniques, intensive experimental results demonstrate that our registration framework is excellent visually and numerically, especially for dealing with low-quality indoor scenes. |
---|---|
ISSN: | 2072-4292 2072-4292 |
DOI: | 10.3390/rs13234755 |