Study on Unsupervised Instance Segmentation Models for Person Re-Identification
Unsupervised instance segmentation for person re-identification is mainly used in challenging cases such as occluded person re-identification and 3D re-identification. Furthermore, unsupervised instance segmentation can be considered as an auxiliary cue, especially useful for long-term person re-ide...
Gespeichert in:
Veröffentlicht in: | International archives of the photogrammetry, remote sensing and spatial information sciences. remote sensing and spatial information sciences., 2024-12, Vol.XLVIII-2/W5-2024, p.41-48 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Unsupervised instance segmentation for person re-identification is mainly used in challenging cases such as occluded person re-identification and 3D re-identification. Furthermore, unsupervised instance segmentation can be considered as an auxiliary cue, especially useful for long-term person re-identification using multiple cameras and single images. Several instance segmentation models, one-stage and two-stage, were examined in this study. We considered two main families of one-stage instance segmentation models: YOLO-based and SOLO-based and trained the most interesting of them. Several datasets were used for experiments, including the Market1501 dataset, the MSMT17 dataset, the DukeMTMC dataset, the DukeMTMC-reID dataset, the CUHK03 dataset, and the VIPeR dataset. The Mask R-CNN model demonstrated the best accuracy results and the YOLOACT++ model showed the best computational results in terms of instance segmentation. To compare the accuracy results without and with instance segmentation, the BUC model for person re-identification was used as a basis. The experimental results show an increase in Rank-1 accuracy values by an average of 2.7–4.9%. |
---|---|
ISSN: | 2194-9034 1682-1750 2194-9034 |
DOI: | 10.5194/isprs-archives-XLVIII-2-W5-2024-41-2024 |