Study on the Influence of Sand Production on Seepage Capacity in Natural Gas Hydrate Reservoirs

Sand production has become a common phenomenon in the exploitation of unconsolidated natural gas hydrate reservoirs, which will hinder the long-term production of natural gas hydrate reservoirs. However, there are few literatures reported on the influences in reservoir physical properties such as pe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Geofluids 2021, Vol.2021, p.1-8
Hauptverfasser: Hao, Yongmao, Liang, Jikai, Kong, Chuixian, Fan, Mingwu, Xu, Hongzhi, Yang, Fan, Yang, Shiwei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Sand production has become a common phenomenon in the exploitation of unconsolidated natural gas hydrate reservoirs, which will hinder the long-term production of natural gas hydrate reservoirs. However, there are few literatures reported on the influences in reservoir physical properties such as permeability and porosity, and production laws caused by sand production. This paper provides a numerical model, coupled with reservoir sand-gas-water multiphase flow processes, which is capable to simulate the process of sand production in natural gas hydrate reservoirs. The simulation results indicate that sand settlement is mainly concentrated near the wellbore due to the high concentration of migrated sand. The decrease in reservoir porosity and permeability caused by sand settlement has a significant impact on production. The impact of sand production on reservoir fluid fluidity shows that fluid flow is inhibited near the wellbore, while fluid flow performance increases far away from the wellbore. The numerical model and analysis presented here could provide useful insight into changes in reservoir physical properties and production laws caused by sand production in the natural gas hydrate-bearing marine sediments using depressurization method.
ISSN:1468-8115
1468-8123
DOI:10.1155/2021/6647647