An Investigation about Modern Deep Learning Strategies for Colon Carcinoma Grading

Developing computer-aided approaches for cancer diagnosis and grading is currently receiving an increasing demand: this could take over intra- and inter-observer inconsistency, speed up the screening process, increase early diagnosis, and improve the accuracy and consistency of the treatment-plannin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sensors (Basel, Switzerland) Switzerland), 2023-05, Vol.23 (9), p.4556
Hauptverfasser: Carcagnì, Pierluigi, Leo, Marco, Signore, Luca, Distante, Cosimo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Developing computer-aided approaches for cancer diagnosis and grading is currently receiving an increasing demand: this could take over intra- and inter-observer inconsistency, speed up the screening process, increase early diagnosis, and improve the accuracy and consistency of the treatment-planning processes.The third most common cancer worldwide and the second most common in women is colorectal cancer (CRC). Grading CRC is a key task in planning appropriate treatments and estimating the response to them. Unfortunately, it has not yet been fully demonstrated how the most advanced models and methodologies of machine learning can impact this crucial task.This paper systematically investigates the use of advanced deep models (convolutional neural networks and transformer architectures) to improve colon carcinoma detection and grading from histological images. To the best of our knowledge, this is the first attempt at using transformer architectures and ensemble strategies for exploiting deep learning paradigms for automatic colon cancer diagnosis. Results on the largest publicly available dataset demonstrated a substantial improvement with respect to the leading state-of-the-art methods. In particular, by exploiting a transformer architecture, it was possible to observe a 3% increase in accuracy in the detection task (two-class problem) and up to a 4% improvement in the grading task (three-class problem) by also integrating an ensemble strategy.
ISSN:1424-8220
1424-8220
DOI:10.3390/s23094556