Bidirectional thermo-regulating hydrogel composite for autonomic thermal homeostasis

Thermal homeostasis is an essential physiological function for preserving the optimal state of complex organs within the human body. Inspired by this function, here, we introduce an autonomous thermal homeostatic hydrogel that includes infrared wave reflecting and absorbing materials for improved he...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2023-05, Vol.14 (1), p.3049-3049, Article 3049
Hauptverfasser: Park, Gyeongsuk, Park, Hyunmin, Seo, Junyong, Yang, Jun Chang, Kim, Min, Lee, Bong Jae, Park, Steve
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Thermal homeostasis is an essential physiological function for preserving the optimal state of complex organs within the human body. Inspired by this function, here, we introduce an autonomous thermal homeostatic hydrogel that includes infrared wave reflecting and absorbing materials for improved heat trapping at low temperatures, and a porous structure for enhanced evaporative cooling at high temperatures. Moreover, an optimized auxetic pattern was designed as a heat valve to further amplify heat release at high temperatures. This homeostatic hydrogel provides effective bidirectional thermoregulation with deviations of 5.04 °C ± 0.55 °C and 5.85 °C ± 0.46 °C from the normal body temperature of 36.5 °C, when the external temperatures are 5 °C and 50 °C, respectively. The autonomous thermoregulatory characteristics of our hydrogel may provide a simple solution to people suffering from autonomic nervous system disorders and soft robotics that are susceptible to sudden temperature fluctuations. Developing materials which mimic thermal homeostasis is limited by complicated fabrication steps or unidirectional temperature transport. Here, the authors develop a homeostatic hydrogel that shows improved heat trapping at low temperatures, and enhanced evaporative cooling at high temperatures.
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-023-38779-w