Multiple cell signalling pathways of human proinsulin c-peptide in vasculopathy protection
A major hallmark of diabetes is a constant high blood glucose level (hyperglycaemia), resulting in endothelial dysfunction. Transient or prolonged hyperglycemia can cause diabetic vasculopathy, a secondary systemic damage. C-Peptide is a product of cleavage of proinsulin by a serine protease that oc...
Gespeichert in:
Veröffentlicht in: | International journal of molecular sciences 2020-01, Vol.21 (2), p.645 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A major hallmark of diabetes is a constant high blood glucose level (hyperglycaemia), resulting in endothelial dysfunction. Transient or prolonged hyperglycemia can cause diabetic vasculopathy, a secondary systemic damage. C-Peptide is a product of cleavage of proinsulin by a serine protease that occurs within the pancreatic -cells, being secreted in similar amounts as insulin. The biological activity of human C-peptide is instrumental in the prevention of diabetic neuropathy, nephropathy and other vascular complications. The main feature of type 1 diabetes mellitus is the lack of insulin and of C-peptide, but the progressive -cell loss is also observed in later stage of type 2 diabetes mellitus. C-peptide has multifaceted effects in animals and diabetic patients due to the activation of multiple cell signalling pathways, highlighting p38 mitogen-activated protein kinase and extracellular signalregulated kinase ½, Akt, as well as endothelial nitric oxide production. Recent works highlight the role of C-peptide in the prevention and amelioration of diabetes and also in organ-specific complications. Benefits of C-peptide in microangiopathy and vasculopathy have been shown through conservation of vascular function, and also in the prevention of endothelial cell death, microvascular permeability, neointima formation, and in vascular inflammation. Improvement of microvascular blood flow by replacing a physiological amount of C-peptide, in several tissues of diabetic animals and humans, mainly in nerve tissue, myocardium, skeletal muscle, and kidney has been described. A review of the multiple cell signalling pathways of human proinsulin C-peptide in vasculopathy protection is proposed, where the approaches to move beyond the state of the art in the development of innovative and effective therapeutic options of diabetic neuropathy and nephropathy are discussed.
The authors acknowledge the financial support received from Portuguese Science and Technology Foundation (FCT/MCT) and from European Funds (PRODER/COMPETE) under the project references M-ERA-NET/0004/2015-PAIRED and UIDB/04469/2020 (strategic fund), co-financed by FEDER, under the Partnership Agreement PT2020. The authors acknowledge the support of the research project: Nutraceutica come supporto nutrizionale nel paziente oncologico, CUP: B83D18000140007. |
---|---|
ISSN: | 1422-0067 1661-6596 1661-6596 1422-0067 |
DOI: | 10.3390/ijms21020645 |