Effect of Cooling and Annealing Conditions on the Microstructure, Mechanical and Superelastic Behavior of a Rotary Forged Ti-18Zr-15Nb (at. %) Bar Stock for Spinal Implants
In this work, the microstructure, phase state, texture, superelastic and mechanical properties of a Ti-18Zr-15Nb (at. %) shape memory alloy subjected to a combined thermomechanical treatment, including hot rotary forging with either air cooling or water quenching and post-deformation annealing are s...
Gespeichert in:
Veröffentlicht in: | Journal of functional biomaterials 2022-11, Vol.13 (4), p.259 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this work, the microstructure, phase state, texture, superelastic and mechanical properties of a Ti-18Zr-15Nb (at. %) shape memory alloy subjected to a combined thermomechanical treatment, including hot rotary forging with either air cooling or water quenching and post-deformation annealing are studied. It was revealed that the main structural component of the deformed and annealed alloy is BCC
-phase. With an increase in the forging temperature from 600 to 700 °C, the average grain size increases from 5.4 to 17.8 µm for the air-cooled specimens and from 3.4 to 14.7 µm for the water-quenched specimens. Annealing at 525 °C after forging at 700 °C with water quenching leads to the formation of a mixed statically and dynamically polygonized substructure of
-phase. In this state, the alloy demonstrates the best combination of functional properties in this study: a Young's modulus of ~33 GPa, an ultimate tensile strength of ~600 MPa and a superelastic recovery strain of ~3.4%. |
---|---|
ISSN: | 2079-4983 2079-4983 |
DOI: | 10.3390/jfb13040259 |