Biooriented Synthesis of Ibuprofen-Clubbed Novel Bis-Schiff Base Derivatives as Potential Hits for Malignant Glioma: In Vitro Anticancer Activity and In Silico Approach
This research work is based on the synthesis of bis-Schiff base derivatives of the commercially available ibuprofen drug in outstanding yields through multistep reactions. Structures of the synthesized compounds were confirmed by the help of modern spectroscopic techniques including high-resolution...
Gespeichert in:
Veröffentlicht in: | ACS omega 2023-12, Vol.8 (51), p.49228-49243 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This research work is based on the synthesis of bis-Schiff base derivatives of the commercially available ibuprofen drug in outstanding yields through multistep reactions. Structures of the synthesized compounds were confirmed by the help of modern spectroscopic techniques including high-resolution electrospray ionization mass spectrometry (HR-ESI-MS), 1H NMR, and 13C NMR. The synthesized compounds were evaluated for their anticancer activity using a normal human embryonic kidney HEK293 cell and U87-malignant glioma (ATCC-HTB-14) as a cancer cell line. All of the synthesized compounds among the series exhibited excellent to less antiproliferative activity having IC50 values ranging from 5.75 ± 0.43 to 150.45 ± 0.20 μM. Among them, compound 5e (IC50 = 5.75 ± 0.43 μM) was found as the most potent antiprolifarative agent, while 5f, 5b, 5a, 5n, 5r, 5s, 5g, 5q, 5i, and 5j exhibited good activity with IC50 values from 24.17 ± 0.46 to 43.71 ± 0.07 μM. These findings suggest that these cells (HEK293) are less cytotoxic to the activities of compounds and increase the cancer cell death in brain, while the lower cytotoxicity of the potent compounds in noncancerous cells suggests that these derivatives will provide promising treatment for patients suffering from brain cancer. The results of the docking study exposed a promising affinity of the active compounds toward casein kinase-2 enzyme, which shows green signal for cancer treatment. |
---|---|
ISSN: | 2470-1343 2470-1343 |
DOI: | 10.1021/acsomega.3c07216 |