Numerical Simulation of Microemulsion Flooding in Low-Permeability Reservoir

Based on the features of microemulsion flooding in low-permeability reservoir, a three-dimension three-phase five-component mathematical model for microemulsion flooding is established in which the diffusion and adsorption characteristics of surfactant molecules are considered. The non-Darcy flow eq...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of chemistry 2019-01, Vol.2019 (2019), p.1-8
Hauptverfasser: Wang, Dongqi, Gong, Xiangzhu, Yin, Daiyin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Based on the features of microemulsion flooding in low-permeability reservoir, a three-dimension three-phase five-component mathematical model for microemulsion flooding is established in which the diffusion and adsorption characteristics of surfactant molecules are considered. The non-Darcy flow equation is used to describe the microemulsion flooding seepage law in which the changes of threshold pressure gradient can be taken into account, and the correlation coefficients in the non-Darcy flow equation are determined through the laboratory experiments. A new treatment for the changes of threshold pressure and the quantitative description of adsorption quantity of surfactant and relative permeability curves are presented, which enhance the coincidence between mathematical model and experiment results. The relative errors of main development indexes are within 4%. A software is programmed based on the model to execute a core-level small-scale numerical simulation in Chaoyanggou Oilfield. The fitting relative errors of the pressure, flow rate, and moisture content are 3.25%, 2.71%, and 2.54%, respectively. The results of laboratory experiments and numerical simulation showed that microemulsion system could reduce the threshold pressure gradient by 0.010 MPa/m and injection pressure by 0.6 MPa. The biggest decline in moisture content reaches 33%, and the oil recovery is enhanced by 10.8%.
ISSN:2090-9063
2090-9071
DOI:10.1155/2019/5021473