Pressure Drop Optimization of the Main Steam and Reheat Steam System of a 1000 MW Secondary Reheat Unit
The pressure drop of a main steam and reheat steam system should be optimized during the design and operation of a thermal power plant to minimize operation costs. In this study, the pressure drop of the main steam pipe and reheat steam pipe of a 1000 MW secondary reheat unit are optimized by modula...
Gespeichert in:
Veröffentlicht in: | Energies (Basel) 2022-05, Vol.15 (9), p.3279 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The pressure drop of a main steam and reheat steam system should be optimized during the design and operation of a thermal power plant to minimize operation costs. In this study, the pressure drop of the main steam pipe and reheat steam pipe of a 1000 MW secondary reheat unit are optimized by modulating the operation parameters and the cost of operation is explored. Optimal pipe specifications were achieved by selecting a bend pipe and optimizing the pipe specifications. The pressure loss of the main steam pipeline was optimized to 2.61% compared with the conventional pressure drop (5%), the heat consumption of steam turbine was reduced by about 0.63 kJ/(kW·h), the standard coal consumption was minimized by about 0.024 g/(kW·h), and the total income in 20 years is approximated to be CNY 217,700. The primary reheat system was optimized to 4.88%, the steam turbine heat consumption was reduced by about 7.13 kJ/(kW·h), the standard coal consumption decreased by about 0.276 g/(kW·h), and the total income in 20 years is projected to be CNY 20.872 million after the optimization of the pressure drop. The secondary reheat system was optimized to 8.13%, the steam turbine heat consumption was reduced by about 7.86 kJ/(kW·h), the standard coal consumption decreased by about 0.304 g/(kW·h), and the total income in 20 years is projected to be CNY 22.7232 million after the optimization of the pressure drop. The research results of the present study provide a guide for the design and operation of secondary reheat units to achieve an effective operation and minimize costs. |
---|---|
ISSN: | 1996-1073 1996-1073 |
DOI: | 10.3390/en15093279 |