Effect of Mechanical Ventilation on Accidental Hydrogen Releases—Large-Scale Experiments

This paper presents a series of experiments on the effectiveness of existing mechanical ventilation systems during accidental hydrogen releases in confined spaces, such as underground garages. The purpose was to find the mass flow rate limit, hence the TPRD diameter limit, that will not require a ch...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Energies (Basel) 2021-06, Vol.14 (11), p.3008
Hauptverfasser: Lach, Agnieszka W., Gaathaug, André V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper presents a series of experiments on the effectiveness of existing mechanical ventilation systems during accidental hydrogen releases in confined spaces, such as underground garages. The purpose was to find the mass flow rate limit, hence the TPRD diameter limit, that will not require a change in the ventilation system. The experiments were performed in a 40 ft ISO container in Norway, and hydrogen gas was used in all experiments. The forced ventilation system was installed with a standard 315 mm diameter outlet. The ventilation parameters during the investigation were British Standard with 10 ACH and British Standard with 6 ACH. The hydrogen releases were obtained through 0.5 mm and 1 mm nozzles from different hydrogen reservoir pressures. Both types of mass flow, constant and blowdown, were included in the experimental matrix. The analysis of the hydrogen concentration of the created hydrogen cloud in the container shows the influence of the forced ventilation on hydrogen releases, together with TPRD diameter and reservoir pressure. The generated experimental data will be used to validate a CFD model in the next step.
ISSN:1996-1073
1996-1073
DOI:10.3390/en14113008