Machine Learning Techniques for Sensor-Based Human Activity Recognition with Data Heterogeneity-A Review

Sensor-based Human Activity Recognition (HAR) is crucial in ubiquitous computing, analyzing behaviors through multi-dimensional observations. Despite research progress, HAR confronts challenges, particularly in data distribution assumptions. Most studies assume uniform data distributions across data...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sensors (Basel, Switzerland) Switzerland), 2024-12, Vol.24 (24), p.7975
Hauptverfasser: Ye, Xiaozhou, Sakurai, Kouichi, Nair, Nirmal-Kumar C, Wang, Kevin I-Kai
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Sensor-based Human Activity Recognition (HAR) is crucial in ubiquitous computing, analyzing behaviors through multi-dimensional observations. Despite research progress, HAR confronts challenges, particularly in data distribution assumptions. Most studies assume uniform data distributions across datasets, contrasting with the varied nature of practical sensor data in human activities. Addressing data heterogeneity issues can improve performance, reduce computational costs, and aid in developing personalized, adaptive models with fewer annotated data. This review investigates how machine learning addresses data heterogeneity in HAR by categorizing data heterogeneity types, applying corresponding suitable machine learning methods, summarizing available datasets, and discussing future challenges.
ISSN:1424-8220
1424-8220
DOI:10.3390/s24247975