Fault-tolerant control for nonlinear systems with a dead zone: Reinforcement learning approach
This paper focuses on the adaptive reinforcement learning-based optimal control problem for standard nonstrict-feedback nonlinear systems with the actuator fault and an unknown dead zone. To simultaneously reduce the computational complexity and eliminate the local optimal problem, a novel neural ne...
Gespeichert in:
Veröffentlicht in: | Mathematical biosciences and engineering : MBE 2023-02, Vol.20 (4), p.6334-6357 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper focuses on the adaptive reinforcement learning-based optimal control problem for standard nonstrict-feedback nonlinear systems with the actuator fault and an unknown dead zone. To simultaneously reduce the computational complexity and eliminate the local optimal problem, a novel neural network weight updated algorithm is presented to replace the classic gradient descent method. By utilizing the backstepping technique, the actor critic-based reinforcement learning control strategy is developed for high-order nonlinear nonstrict-feedback systems. In addition, two auxiliary parameters are presented to deal with the input dead zone and actuator fault respectively. All signals in the system are proven to be semi-globally uniformly ultimately bounded by Lyapunov theory analysis. At the end of the paper, some simulation results are shown to illustrate the remarkable effect of the proposed approach. |
---|---|
ISSN: | 1551-0018 1551-0018 |
DOI: | 10.3934/mbe.2023274 |