Fault-tolerant control for nonlinear systems with a dead zone: Reinforcement learning approach

This paper focuses on the adaptive reinforcement learning-based optimal control problem for standard nonstrict-feedback nonlinear systems with the actuator fault and an unknown dead zone. To simultaneously reduce the computational complexity and eliminate the local optimal problem, a novel neural ne...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical biosciences and engineering : MBE 2023-02, Vol.20 (4), p.6334-6357
Hauptverfasser: Wang, Zichen, Wang, Xin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper focuses on the adaptive reinforcement learning-based optimal control problem for standard nonstrict-feedback nonlinear systems with the actuator fault and an unknown dead zone. To simultaneously reduce the computational complexity and eliminate the local optimal problem, a novel neural network weight updated algorithm is presented to replace the classic gradient descent method. By utilizing the backstepping technique, the actor critic-based reinforcement learning control strategy is developed for high-order nonlinear nonstrict-feedback systems. In addition, two auxiliary parameters are presented to deal with the input dead zone and actuator fault respectively. All signals in the system are proven to be semi-globally uniformly ultimately bounded by Lyapunov theory analysis. At the end of the paper, some simulation results are shown to illustrate the remarkable effect of the proposed approach.
ISSN:1551-0018
1551-0018
DOI:10.3934/mbe.2023274