The entanglement wedge of unknown couplings
A bstract The black hole interior is a mysterious region of spacetime where non-perturbative effects are sometimes important. These non-perturbative effects are believed to be highly theory-dependent. We sharpen these statements by considering a setup where the state of the black hole is in a superp...
Gespeichert in:
Veröffentlicht in: | The journal of high energy physics 2022-08, Vol.2022 (8), p.62-53, Article 62 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A
bstract
The black hole interior is a mysterious region of spacetime where non-perturbative effects are sometimes important. These non-perturbative effects are believed to be highly theory-dependent. We sharpen these statements by considering a setup where the state of the black hole is in a superposition of states corresponding to boundary theories with different couplings, entangled with a reference which keeps track of those couplings. The entanglement wedge of the reference can then be interpreted as the bulk region most sensitive to the values of the couplings. In simple bulk models, e.g., JT gravity + a matter BCFT, the QES formula implies that the reference contains the black hole interior at late times. We also analyze the Renyi-2 entropy tr
ρ
2
of the reference, which can be viewed as a diagnostic of chaos via the Loschmidt echo. We find explicitly the replica wormhole that diagnoses the island and restores unitarity. Numerical and analytical evidence of these statements in the SYK model is presented. Similar considerations are expected to apply in higher dimensional AdS/CFT, for marginal and even irrelevant couplings. |
---|---|
ISSN: | 1029-8479 1029-8479 |
DOI: | 10.1007/JHEP08(2022)062 |