Self-induced Bose glass phase in quantum quasicrystals

We study the emergence of Bose glass phases in self sustained bosonic quasicrystals induced by a pair interaction between particles of Lifshitz–Petrich type. By using a mean-field variational method designed in momentum space as well as Gross–Pitaevskii simulations we determine the phase diagram of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Results in physics 2024-10, Vol.65, p.107991, Article 107991
Hauptverfasser: Grossklags, M., Ciardi, M., Zampronio, V., Cinti, F., Mendoza-Coto, A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study the emergence of Bose glass phases in self sustained bosonic quasicrystals induced by a pair interaction between particles of Lifshitz–Petrich type. By using a mean-field variational method designed in momentum space as well as Gross–Pitaevskii simulations we determine the phase diagram of the model. The study of the local and global superfluid fraction allows the identification of supersolid, super quasicrystal, Bose glass and insulating phases. The Bose glass phase emerges as a quasicrystal phase in which the global superfluidity is essentially zero, while the local superfluidity remains finite in certain ring structures of the quasicrystalline pattern. Furthermore, we perform continuous space Path Integral Monte Carlo simulations for a case in which the interaction between particles stabilizes a quasicrystal phase. Our results show that as the strength of the interaction between particles is increased the system undergoes a sequence of states consistent with the super quasicrystal, Bose glass, and quasicrystal insulator thermodynamic phases.
ISSN:2211-3797
2211-3797
DOI:10.1016/j.rinp.2024.107991