Evidence that ubiquitylated H2B corrals hDot1L on the nucleosomal surface to induce H3K79 methylation
Ubiquitylation of histone H2B at lysine 120 (H2B-Ub), a post-translational modification first discovered in 1980, plays a critical role in diverse nuclear processes including the regulation of transcription and DNA damage repair. Herein, we use a suite of protein chemistry methods to explore how H2B...
Gespeichert in:
Veröffentlicht in: | Nature communications 2016-02, Vol.7 (1), p.10589-10589, Article 10589 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Ubiquitylation of histone H2B at lysine 120 (H2B-Ub), a post-translational modification first discovered in 1980, plays a critical role in diverse nuclear processes including the regulation of transcription and DNA damage repair. Herein, we use a suite of protein chemistry methods to explore how H2B-Ub stimulates hDot1L-mediated methylation of histone H3 on lysine 79 (H3K79me). By using semisynthetic ‘designer’ chromatin containing H2B-Ub bearing a site-specifically installed photocrosslinker, here we report an interaction between a functional hotspot on ubiquitin and the N-terminus of histone H2A. Our biochemical studies indicate that this interaction is required for stimulation of hDot1L activity and leads to a repositioning of hDot1L on the nucleosomal surface, which likely places the active site of the enzyme proximal to H3K79. Collectively, our data converge on a possible mechanism for hDot1L stimulation in which H2B-Ub physically ‘corrals’ the enzyme into a productive binding orientation.
The ubiquitylation of histone H2B on lysine 120 is an important modification with roles in a diverse range of nuclear processes. Here, the authors use 'designer' chromatin to show that H2B-ub orients hDot1L into the correct position for activation. |
---|---|
ISSN: | 2041-1723 2041-1723 |
DOI: | 10.1038/ncomms10589 |