Reconstructing particles in jets using set transformer and hypergraph prediction networks

The task of reconstructing particles from low-level detector response data to predict the set of final state particles in collision events represents a set-to-set prediction task requiring the use of multiple features and their correlations in the input data. We deploy three separate set-to-set neur...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The European physical journal. C, Particles and fields Particles and fields, 2023-07, Vol.83 (7), p.596-18, Article 596
Hauptverfasser: Di Bello, Francesco Armando, Dreyer, Etienne, Ganguly, Sanmay, Gross, Eilam, Heinrich, Lukas, Ivina, Anna, Kado, Marumi, Kakati, Nilotpal, Santi, Lorenzo, Shlomi, Jonathan, Tusoni, Matteo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The task of reconstructing particles from low-level detector response data to predict the set of final state particles in collision events represents a set-to-set prediction task requiring the use of multiple features and their correlations in the input data. We deploy three separate set-to-set neural network architectures to reconstruct particles in events containing a single jet in a fully-simulated calorimeter. Performance is evaluated in terms of particle reconstruction quality, properties regression, and jet-level metrics. The results demonstrate that such a high-dimensional end-to-end approach succeeds in surpassing basic parametric approaches in disentangling individual neutral particles inside of jets and optimizing the use of complementary detector information. In particular, the performance comparison favors a novel architecture based on learning hypergraph structure, HGPflow , which benefits from a physically-interpretable approach to particle reconstruction.
ISSN:1434-6052
1434-6044
1434-6052
DOI:10.1140/epjc/s10052-023-11677-7