Tune compensation in nearly scaling fixed field alternating gradient accelerators

In this paper, we investigate the stability of the particle trajectories in fixed field alternating gradient accelerators (FFAs) in the presence of field errors. The emphasis is on the scaling radial sector FFA type: A collaboration work is ongoing in view of better understanding the properties of t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. Accelerators and beams 2020-05, Vol.23 (5), p.054003, Article 054003
Hauptverfasser: Haj Tahar, M., Méot, F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we investigate the stability of the particle trajectories in fixed field alternating gradient accelerators (FFAs) in the presence of field errors. The emphasis is on the scaling radial sector FFA type: A collaboration work is ongoing in view of better understanding the properties of the 150 MeV scaling FFA at Kyoto University Institute for Integrated Radiation and Nuclear Science in Japan and progress toward high-intensity operation. Analysis of certain types of field imperfections revealed some interesting features that required the development of an analytical model based on the scalloping angle of the orbits. This helped explain some of the experimental results as well as generalize the concept of a scaling FFA to a nonscaling one for which the tune variations obey a well-defined law. Based on this, a compensation scheme of tune variations in imperfect scaling FFAs is presented. This is the cornerstone of a novel concept of a fixed tune FFA in which the scaling is not achieved at every azimuthal position of the ring but rather in an average sense.
ISSN:2469-9888
2469-9888
DOI:10.1103/PhysRevAccelBeams.23.054003