AI-based model for automatic identification of multiple sclerosis based on enhanced sea-horse optimizer and MRI scans

This study aims to develop an AI-enhanced methodology for the expedited and accurate diagnosis of Multiple Sclerosis (MS), a chronic disease affecting the central nervous system leading to progressive impairment. Traditional diagnostic methods are slow and require substantial expertise, underscoring...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2024-05, Vol.14 (1), p.12104-12104, Article 12104
Hauptverfasser: Khattap, Mohamed G., Abd Elaziz, Mohamed, Hassan, Hend Galal Eldeen Mohamed Ali, Elgarayhi, Ahmed, Sallah, Mohammed
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This study aims to develop an AI-enhanced methodology for the expedited and accurate diagnosis of Multiple Sclerosis (MS), a chronic disease affecting the central nervous system leading to progressive impairment. Traditional diagnostic methods are slow and require substantial expertise, underscoring the need for innovative solutions. Our approach involves two phases: initially, extracting features from brain MRI images using first-order histograms, the gray level co-occurrence matrix, and local binary patterns. A unique feature selection technique combining the Sine Cosine Algorithm with the Sea-horse Optimizer is then employed to identify the most significant features. Utilizing the eHealth lab dataset, which includes images from 38 MS patients (mean age 34.1 ± 10.5 years; 17 males, 21 females) and matched healthy controls, our model achieved a remarkable 97.97% detection accuracy using the k-nearest neighbors classifier. Further validation on a larger dataset containing 262 MS cases (199 females, 63 males; mean age 31.26 ± 10.34 years) and 163 healthy individuals (109 females, 54 males; mean age 32.35 ± 10.30 years) demonstrated a 92.94% accuracy for FLAIR images and 91.25% for T2-weighted images with the Random Forest classifier, outperforming existing MS detection methods. These results highlight the potential of the proposed technique as a clinical decision-making tool for the early identification and management of MS.
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-024-61876-9