Highly efficient graphene terahertz modulator with tunable electromagnetically induced transparency-like transmission

Graphene-based optical modulators have been extensively studied owing to the high mobility and tunable permittivity of graphene. However, weak graphene-light interactions make it difficult to achieve a high modulation depth with low energy consumption. Here, we propose a high-performance graphene-ba...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2023-04, Vol.13 (1), p.6680-7, Article 6680
Hauptverfasser: Kim, Myunghwan, Kim, Seong-Han, Kang, Chul, Kim, Soeun, Kee, Chul-Sik
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Graphene-based optical modulators have been extensively studied owing to the high mobility and tunable permittivity of graphene. However, weak graphene-light interactions make it difficult to achieve a high modulation depth with low energy consumption. Here, we propose a high-performance graphene-based optical modulator consisting of a photonic crystal structure and a waveguide with graphene that exhibits an electromagnetically-induced-transparency-like (EIT-like) transmission spectrum at terahertz frequency. The high quality-factor guiding mode to generate the EIT-like transmission enhances light-graphene interaction, and the designed modulator achieves a high modulation depth of 98% with a significantly small Fermi level shift of 0.05 eV. The proposed scheme can be utilized in active optical devices that require low power consumption.
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-023-34020-2