Hanle Effect with Angle-dependent Partial Frequency Redistribution in Three-dimensional Media

There has been a constant improvement in the observational measurement of linear polarization in chromospheric spectral lines in the last three decades. However, modeling polarized profiles of these lines still remains incomplete, due to the lack of inclusion of fundamental physics in modeling effor...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Astrophysical journal 2023-06, Vol.949 (2), p.84
1. Verfasser: Anusha, L. S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:There has been a constant improvement in the observational measurement of linear polarization in chromospheric spectral lines in the last three decades. However, modeling polarized profiles of these lines still remains incomplete, due to the lack of inclusion of fundamental physics in modeling efforts. To model the observed solar spectrum and its linear polarization, we need a solution to the polarized radiative transfer equation. The polarization in strong resonance lines originates from the scattering mechanism known as the partial frequency redistribution (PFR) of an anisotropic radiation field. The understanding of the linear polarization in spatially resolved structures needs radiative transfer solutions in multidimensional geometries. In this paper, we explore the effects of angle-dependent PFR on scattering polarization profiles formed in three-dimensional (3D) media. We find that the 3D geometry combined with angle-dependent PFR produces more scattering polarization than an angle-averaged one.
ISSN:0004-637X
1538-4357
DOI:10.3847/1538-4357/acc9a8