Removal of Bound PAH Residues in Contaminated Soils by Fenton Oxidation

The availability of bound residues of polycyclic aromatic hydrocarbons (PAHs), in reference to their parent compounds, can be enhanced by microbial activity and chemical reactions, which pose severe risks for the ecosystems encompassing contaminated soils. Considerable attention has been raised on h...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Catalysts 2019-07, Vol.9 (7), p.619
Hauptverfasser: Zhao, Xuqiang, Qin, Li, Gatheru Waigi, Michael, Cheng, Pengfei, Yang, Bing, Wang, Jian, Ling, Wanting
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The availability of bound residues of polycyclic aromatic hydrocarbons (PAHs), in reference to their parent compounds, can be enhanced by microbial activity and chemical reactions, which pose severe risks for the ecosystems encompassing contaminated soils. Considerable attention has been raised on how to remove these bound residues from PAH-contaminated soils. This paper provides a novel application of Fenton oxidation in the removal of bound residues of model PAHs, such as naphthalene (NAP), acenaphthene (ACP), fluorene (FLU) and anthracene (ANT), from naturally contaminated soils. The citric acid-enhanced Fenton treatment resulted in the degradation of bound PAH residues that followed pseudo-first-order kinetics, with rate constants within 4.22 × 10−2, 1.25 × 10−1 and 2.72 × 10−1 h−1 for NAP, FLU, and ANT, respectively. The reactivity of bound PAH residues showed a correlation with their ionization potential (IP) values. Moreover, the degradation rate of bound PAH residues was significantly correlated with H2O2-Fe2+ ratio (m/m) and H2O2 concentrations. The highest removal efficiencies of bound PAH residues was up to 89.5% with the treatment of chelating agent oxalic acid, which was demonstrated to be superior to other acids, such as citric acid and hydrochloric acid. This study provides valuable insight into the feasibility of citric acid-Fenton and oxalic acid-Fenton treatments in rehabilitating bound PAH residues in contaminated soils.
ISSN:2073-4344
2073-4344
DOI:10.3390/catal9070619