Coarse-grained collisionless dynamics with long-range interactions

We present an effective evolution equation for a coarse-grained distribution function of a long-range-interacting system preserving the symplectic structure of the noncollisional Boltzmann, or Vlasov, equation. First, we derive a general form of such an equation based on symmetry considerations only...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review research 2020-06, Vol.2 (2), p.023379, Article 023379
Hauptverfasser: Giachetti, Guido, Santini, Alessandro, Casetti, Lapo
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We present an effective evolution equation for a coarse-grained distribution function of a long-range-interacting system preserving the symplectic structure of the noncollisional Boltzmann, or Vlasov, equation. First, we derive a general form of such an equation based on symmetry considerations only. Then we explicitly derive the equation for one-dimensional systems, finding that it has the form predicted on general grounds. Finally, we use this equation to predict the dependence of the damping times on the coarse-graining scale and numerically check it for some one-dimensional models, including the Hamiltonian mean-field model, a scalar field with quartic interaction, a 1-d self-gravitating system, and a self-gravitating ring.
ISSN:2643-1564
2643-1564
DOI:10.1103/PhysRevResearch.2.023379