Random Access Using Deep Reinforcement Learning in Dense Mobile Networks

5G and Beyond 5G mobile networks use several high-frequency spectrum bands such as the millimeter-wave (mmWave) bands to alleviate the problem of bandwidth scarcity. However high-frequency bands do not cover larger distances. The coverage problem is addressed by using a heterogeneous network which c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sensors (Basel, Switzerland) Switzerland), 2021-05, Vol.21 (9), p.3210
Hauptverfasser: Bekele, Yared Zerihun, Choi, Young-June
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:5G and Beyond 5G mobile networks use several high-frequency spectrum bands such as the millimeter-wave (mmWave) bands to alleviate the problem of bandwidth scarcity. However high-frequency bands do not cover larger distances. The coverage problem is addressed by using a heterogeneous network which comprises numerous small and macrocells, defined by transmission and reception points (TRxPs). For such a network, random access is considered a challenging function in which users attempt to select an efficient TRxP by random access within a given time. Ideally, an efficient TRxP is less congested, minimizing delays in users’ random access. However, owing to the nature of random access, it is not feasible to deploy a centralized controller estimating the congestion level of each cell and deliver this information back to users during random access. To solve this problem, we establish an optimization problem and employ a reinforcement-learning-based scheme. The proposed scheme estimates congestion of TRxPs in service and selects the optimal access point. Mathematically, this approach is beneficial in approximating and minimizing a random access delay function. Through simulation, we demonstrate that our proposed deep learning-based algorithm improves performance on random access. Notably, the average access delay is improved by 58.89% from the original 3GPP algorithm, and the probability of successful access also improved.
ISSN:1424-8220
1424-8220
DOI:10.3390/s21093210