The Trefoil Soliton
The Kiepert trefoil is an algebraic curve with remarkable geometric and number theoretic properties. Ludwig Kiepert, generalizing ideas due to Serret and Liouville, determined that it could be parametrized by arc length in terms of elliptic functions. In this note, we observe some other properties o...
Gespeichert in:
Veröffentlicht in: | Mathematics (Basel) 2022-05, Vol.10 (9), p.1512 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The Kiepert trefoil is an algebraic curve with remarkable geometric and number theoretic properties. Ludwig Kiepert, generalizing ideas due to Serret and Liouville, determined that it could be parametrized by arc length in terms of elliptic functions. In this note, we observe some other properties of the curve. In particular, the curve is a special example of a buckled ring, and thus a solitary wave solution to the planar filament equation, evolving by rotation. It is also a solitary wave solution to a flow in the (three-dimensional) filament hierarchy, evolving by translation. |
---|---|
ISSN: | 2227-7390 2227-7390 |
DOI: | 10.3390/math10091512 |