A hybrid integrated deep learning model for predicting various air pollutants
Air pollution is a significant urban issue, with practical applications for pollution control, urban environmental management planning, and urban construction. However, owing to the complexity and differences in spatiotemporal changes for various types of pollution, it is challenging to establish a...
Gespeichert in:
Veröffentlicht in: | GIScience and remote sensing 2021-11, Vol.58 (8), p.1395-1412 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Air pollution is a significant urban issue, with practical applications for pollution control, urban environmental management planning, and urban construction. However, owing to the complexity and differences in spatiotemporal changes for various types of pollution, it is challenging to establish a framework that can capture the spatiotemporal correlations of different types of air pollution and obtain high prediction accuracy. In this paper, we proposed a deep learning framework suitable for predicting various air pollutants: a graph convolutional temporal sliding long short-term memory (GT-LSTM) model. The hybrid integrated model combines graph convolutional networks and long short-term networks based on a strategy with temporal sliding. Herein, the graph convolution networks gather neighbor information for spatial dependency modeling based on the spatial adjacency matrices of different pollutants and the graph convolution operator with parameter sharing. LSTM networks with a temporal sliding strategy are used to learn dynamic air pollution changes for temporal dependency modeling. The framework was applied to predict the average concentrations of PM
2.5
, PM
10
, O
3
, CO, SO
2
, and NO
2
in the Bejing-Tianjin-Hebei (BTH) region for the next 24 hours. Experiments demonstrated that the proposed GT-LSTM model could extract high-level spatiotemporal features and achieve higher accuracy and stability than state-of-the-art baselines. Advancement in this methodology can assist in providing decision support capabilities to mitigate air quality issues. |
---|---|
ISSN: | 1548-1603 1943-7226 |
DOI: | 10.1080/15481603.2021.1988429 |