The effects of educational robotics in STEM education: a multilevel meta-analysis

Educational robotics, as emerging technologies, have been widely applied in the field of STEM education to enhance the instructional and learning quality. Although previous research has highlighted potentials of applying educational robotics in STEM education, there is a lack of empirical evidence t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International Journal of STEM Education 2024-12, Vol.11 (1), p.7-18, Article 7
Hauptverfasser: Ouyang, Fan, Xu, Weiqi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Educational robotics, as emerging technologies, have been widely applied in the field of STEM education to enhance the instructional and learning quality. Although previous research has highlighted potentials of applying educational robotics in STEM education, there is a lack of empirical evidence to investigate and understand the overall effects of using educational robotics in STEM education as well as the critical factors that influence the effects. To fill this gap, this research conducted a multilevel meta-analysis to examine the overall effect size of using educational robotics in STEM education under K-16 education based on 30 effect sizes from 21 studies published between 2010 and 2022. Furthermore, we examined the possible moderator variables of robot-assisted STEM education, including discipline, educational level, instructor support, instructional strategy, interactive type, intervention duration, robotic type, and control group condition. Results showed that educational robotics had the moderate-sized effects on students’ STEM learning compared to the non-robotics condition. Specifically, educational robotics had moderate-sized effects on students’ learning performances and learning attitudes, and insignificant effects on the improvement of computational thinking. Furthermore, we examined the influence of moderator variables in robot-assisted STEM education. Results indicated that the moderator variable of discipline was significantly associated with the effects of educational robotics on STEM learning. Based on the findings, educational and technological implications were provided to guide future research and practice in the application of educational robotics in STEM education.
ISSN:2196-7822
2196-7822
DOI:10.1186/s40594-024-00469-4