Melatonin-Secreting Pineal Gland: A Novel Tissue Source for Neural Transplantation Therapy in Stroke
Chronic systemic melatonin treatment attenuates abnormalities produced by occlusion of middle cerebral artery (MCA) in adult rats. Because the pineal gland secretes high levels of melatonin, we examined in the present study whether transplantation of pineal gland exerted similar protective effects i...
Gespeichert in:
Veröffentlicht in: | Cell transplantation 2003-01, Vol.12 (3), p.225-234 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Chronic systemic melatonin treatment attenuates abnormalities produced by occlusion of middle cerebral artery (MCA) in adult rats. Because the pineal gland secretes high levels of melatonin, we examined in the present study whether transplantation of pineal gland exerted similar protective effects in MCA-occluded adult rats. Animals underwent same-day MCA occlusion and either intrastriatal transplantation of pineal gland (harvested from 2-month-old rats) or vehicle infusion. Behavioral tests (from day of surgery to 3 days posttransplantation) revealed that transplanted stroke rats displayed significantly less motor asymmetrical behaviors than vehicle-infused stroke rats. Histological analysis at 3 days posttransplantation revealed that transplanted stroke rats had significantly smaller cerebral infarction than vehicle-infused rats. Additional experiments showed that pinealectomy affected transplantation outcome, in that transplantation of pineal gland only protected against stroke-induced deficits in stroke animals with intact pineal gland, but not in pinealectomized stroke rats. Interestingly, nonpinealectomized vehicle-infused stroke rats, as well as pinealectomized transplanted stroke rats, had significantly lower melatonin levels in the cerebrospinal fluid than nonpinealectomized transplanted stroke rats. We conclude that intracerebral transplantation of pineal gland, in the presence of host intact pineal gland, protected against stroke, possibly through secretion of melatonin. |
---|---|
ISSN: | 0963-6897 1555-3892 |
DOI: | 10.3727/000000003108746786 |