Scanning Electrochemical Microscope Studies of Charge Transfer Kinetics at the Interface of the Perovskite/Hole Transport Layer

Interfacial carrier transfer kinetics is critical to the efficiency and stability of perovskite solar cells. Herein, we measure the regeneration rate constant, absorption cross-section, reduction rate constant, and conductivity of hole transport layered perovskites using scanning electrochemical mic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of nanotechnology 2023-02, Vol.2023, p.1-12
Hauptverfasser: Anshebo, Getachew Alemu, Gebreyohanes, Ataklti Abraha, Difer, Bizuneh Gebremichael, Anshebo, Teketel Alemu
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Interfacial carrier transfer kinetics is critical to the efficiency and stability of perovskite solar cells. Herein, we measure the regeneration rate constant, absorption cross-section, reduction rate constant, and conductivity of hole transport layered perovskites using scanning electrochemical microscopy (SECM). The SECM feedback revealed that the regeneration rate constant, absorption cross-section, and reduction rate constant of the nickel oxide (NiO) layer perovskite layer are higher than those of the poly (3,4-ethyenedioxythiophene)-poly (styrenesulfonate) layered perovskite. Also, at a specific flux density (Jhv), the value of the regeneration rate constant (keff) in both blue and red illuminations for the NiO/CH3NH3PbI3 film is significantly higher than in both PEDOT: PSS/CH3NH3PbI3 and FTO/CH3NH3PbI3 films. The difference in keff between layered and nonlayered perovskite conforms to the impact of the hole conducting layer on the charge transfer kinetics. According to the findings, SECM is a powerful approach for screening an appropriate hole transport layer for stable perovskite solar cells.
ISSN:1687-9503
1687-9511
DOI:10.1155/2023/1844719