Comprehensive Performances of Hybrid-Modified Asphalt Mixtures with Nano-ZnO and Styrene-Butadiene-Styrene (SBS) Modifiers

An effort was made to improve the separation issue of styrene-butadiene-styrene modifiers in styrene-butadiene-styrene-modified asphalt binders and to further enhance their performance by adding nano-ZnO to the styrene-butadiene-styrene-modified asphalt binder to prepare compound modified binder. Fi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Baltic journal of road and bridge engineering 2022-09, Vol.17 (3), p.170-186
Hauptverfasser: Li, Xiaolong, Shen, Junan, Dai, Zhen, Ling, Tianqing, Li, Xinsheng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:An effort was made to improve the separation issue of styrene-butadiene-styrene modifiers in styrene-butadiene-styrene-modified asphalt binders and to further enhance their performance by adding nano-ZnO to the styrene-butadiene-styrene-modified asphalt binder to prepare compound modified binder. First, the optimum nano-ZnO dosage was determined based on conventional tests, i.e., penetration, ring and ball softening point, and ductility at a fixed styrene-butadiene-styrene dosage; then, dynamic shear rheometer, bending beam rheometer, and fluorescence microscopy tests were conducted to evaluate the properties of the nano-ZnO/styrene-butadiene-styrene hybrid-modified asphalt binders. Finally, the rutting test, trabecular bending test, submerged Marshall test, and the freeze-thaw splitting test was conducted to evaluate the properties of the asphalt mixtures produced with the hybrid-modified binders. The main results showed that: the optimum nano-ZnO dosage, which was 4% by weight to the asphalt binder, and an improvement of the separation issue of the styrene-butadiene-styrene, and the flexural tensile strength and the maximum bending tensile strain of the hybrid-modified asphalt mixtures increased by 13.4% and 16.4%, respectively. In addition, the residual stability and the tensile strength ratio also increased by 4.3% and 4.8%, respectively, compared to the styrene-butadiene-styrene-modified asphalt mixtures. In conclusion, nano-ZnO improves the low-temperature and water stability performances of the styrene-butadiene-styrene-modified asphalt mixture.
ISSN:1822-427X
1822-4288
DOI:10.7250/bjrbe.2022-17.574