Nitrogen and phosphorus removal efficiency and algae viability in an immobilized algae and bacteria symbiosis system with pink luminescent filler
In this study, an immobilized algae and bacteria symbiotic biofilm reactor (ABSBR) with pink luminescent filler (PLF) was constructed. The effects of PLF addition in the construction of an algae and bacteria symbiotic biofilm system on the nitrogen and phosphorus removal efficiencies and algae viabi...
Gespeichert in:
Veröffentlicht in: | Water science and technology 2022-01, Vol.85 (1), p.104-115 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this study, an immobilized algae and bacteria symbiotic biofilm reactor (ABSBR) with pink luminescent filler (PLF) was constructed. The effects of PLF addition in the construction of an algae and bacteria symbiotic biofilm system on the nitrogen and phosphorus removal efficiencies and algae viability were evaluated. Our results showed that for influent TN and TP concentrations of 40 ± 5 and 5 ± 0.8 mg/L, respectively, the pollutant removal rates (PRRs) of TN and TP by the ABSBR can reach up to 74.74% and 88.36%, respectively. The chlorophyll-a (chl-a) concentration on the PLF reaches approximately 5,500 μg/L with a specific oxygen generation rate (SOGR) of 65.48 μmolO
mg
Chl-a h
. These results indicate that the adding PLF into algae and bacteria symbiosis systems can effectively improve the nitrogen and phosphorus removal efficiencies of the sewage as well as increase biomass and viability of the algae in the system. |
---|---|
ISSN: | 0273-1223 1996-9732 |
DOI: | 10.2166/wst.2021.606 |