Two-sided sgut-majorization and its linear preservers

Let $\textbf{M}_{n,m}$ be the set of all $n$-by-$m$ real matrices, and let $\mathbb{R}^{n}$ be  the set of all $n$-by-$1$ real vectors. An $n$-by-$m$ matrix $R=[r_{ij}]$ is called g-row substochastic if $\sum_{k=1}^{m} r_{ik}\leq 1$  for all $i\     (1\leq i \leq n)$.  For $x$, $y \in \mathbb{R}^{n}...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Mahani Mathematical Research Center 2023-05, Vol.12 (2), p.339-347
1. Verfasser: Asma Ilkhanizadeh Manesh
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let $\textbf{M}_{n,m}$ be the set of all $n$-by-$m$ real matrices, and let $\mathbb{R}^{n}$ be  the set of all $n$-by-$1$ real vectors. An $n$-by-$m$ matrix $R=[r_{ij}]$ is called g-row substochastic if $\sum_{k=1}^{m} r_{ik}\leq 1$  for all $i\     (1\leq i \leq n)$.  For $x$, $y \in \mathbb{R}^{n}$, it is said that $x$ is $\textit{sgut-majorized}$ by $y$, and we write  $ x    \prec_{sgut}y$  if there exists an $n$-by-$n$ upper triangular g-row substochastic matrix $R$ such that $x=Ry$. Define the relation $\sim_{sgut}$ as follows. $x\sim_{sgut}y$ if and only if $x$ is   sgut-majorized  by $y$ and $y$ is sgut-majorized  by $x$.  This paper characterizes all (strong)  linear preservers   of  $\sim_{sgut}$ on $\mathbb{R}^{n}$.
ISSN:2251-7952
2645-4505
DOI:10.22103/jmmr.2022.19692.1277