Forecasting Emergency Calls With a Poisson Neural Network-Based Assemble Model

Forecasting emergency calls are of great importance in practice. By forecasting the occurrence of unfortunate events, we can learn from these events and further prevent their occurrence in the future. However, because of the uncertainty of event occurrences, it is hard to guarantee their prediction...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2019, Vol.7, p.18061-18069
Hauptverfasser: Huang, Hongyun, Jiang, Mingyue, Ding, Zuohua, Zhou, Mengchu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Forecasting emergency calls are of great importance in practice. By forecasting the occurrence of unfortunate events, we can learn from these events and further prevent their occurrence in the future. However, because of the uncertainty of event occurrences, it is hard to guarantee their prediction accuracy. In this paper, a combined model, which consists of two parts, is proposed. The first part is a Poisson neural network model (PNN). It is responsible for basic forecasting, and its initial weights and thresholds are trained by applying a genetic algorithm. The second part consists of multiple linear regression (MLR), autoregressive integrated moving average (ARIMA), and multivariate gray (GM), which are responsible for estimating residual errors. The basic prediction result adjusted by the residual error is used as the final forecasting result. The proposed model fully takes the advantages of PNN, MLR, ARIMA, and GM, and thus improves forecasting performance. Our method has been applied to the emergency calls of Ningbo, China. The experimental results show that the proposed model has advantages over some existing forecasting models, such as a neural network model, Poisson regression, and stochastic configuration networks in terms of mean absolute percentage error.
ISSN:2169-3536
2169-3536
DOI:10.1109/ACCESS.2019.2896887