Multiscale Chebyshev Neural Network Identification and Adaptive Control for Backlash-Like Hysteresis System
An adaptive control based on a new Multiscale Chebyshev Neural Network (MSCNN) identification is proposed for the backlash-like hysteresis nonlinearity system in this paper. Firstly, a MSCNN is introduced to approximate the backlash-like nonlinearity of the system, and then, the Lyapunov theorem ass...
Gespeichert in:
Veröffentlicht in: | Complexity (New York, N.Y.) N.Y.), 2018-01, Vol.2018 (2018), p.1-9 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | An adaptive control based on a new Multiscale Chebyshev Neural Network (MSCNN) identification is proposed for the backlash-like hysteresis nonlinearity system in this paper. Firstly, a MSCNN is introduced to approximate the backlash-like nonlinearity of the system, and then, the Lyapunov theorem assures the identification approach is effective. Afterward, to simplify the control design, tracking error is transformed into a scalar error with Laplace transformation. Therefore, an adaptive control strategy based on the transformed scalar error is proposed, and all the signals of the closed-loop system are uniformly ultimately bounded (UUB). Finally, simulation results have demonstrated the performance of the proposed control scheme. |
---|---|
ISSN: | 1076-2787 1099-0526 |
DOI: | 10.1155/2018/1872493 |