Reproducing Kernel Hilbert Space vs. Frame Estimates

We consider conditions on a given system F of vectors in Hilbert space H, forming a frame, which turn H into a reproducing kernel Hilbert space. It is assumed that the vectors in F are functions on some set Ω . We then identify conditions on these functions which automatically give H the structure o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematics (Basel) 2015-09, Vol.3 (3), p.615-625
Hauptverfasser: Jorgensen, Palle E T, Song, Myung-Sin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We consider conditions on a given system F of vectors in Hilbert space H, forming a frame, which turn H into a reproducing kernel Hilbert space. It is assumed that the vectors in F are functions on some set Ω . We then identify conditions on these functions which automatically give H the structure of a reproducing kernel Hilbert space of functions on Ω. We further give an explicit formula for the kernel, and for the corresponding isometric isomorphism. Applications are given to Hilbert spaces associated to families of Gaussian processes.
ISSN:2227-7390
2227-7390
DOI:10.3390/math3030615