Isosteviol Sodium (STVNA) Reduces Pro-Inflammatory Cytokine IL-6 and GM-CSF in an In Vitro Murine Stroke Model of the Blood–Brain Barrier (BBB)

Early treatment with glucocorticoids could help reduce both cytotoxic and vasogenic edema, leading to improved clinical outcome after stroke. In our previous study, isosteviol sodium (STVNA) demonstrated neuroprotective effects in an in vitro stroke model, which utilizes oxygen-glucose deprivation (...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Pharmaceutics 2022-08, Vol.14 (9), p.1753
Hauptverfasser: Reschke, Moritz, Salvador, Ellaine, Schlegel, Nicolas, Burek, Malgorzata, Karnati, Srikanth, Wunder, Christian, Förster, Carola Y.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Early treatment with glucocorticoids could help reduce both cytotoxic and vasogenic edema, leading to improved clinical outcome after stroke. In our previous study, isosteviol sodium (STVNA) demonstrated neuroprotective effects in an in vitro stroke model, which utilizes oxygen-glucose deprivation (OGD). Herein, we tested the hypothesis that STVNA can activate glucocorticoid receptor (GR) transcriptional activity in brain microvascular endothelial cells (BMECs) as previously published for T cells. STVNA exhibited no effects on transcriptional activation of the glucocorticoid receptor, contrary to previous reports in Jurkat cells. However, similar to dexamethasone, STVNA inhibited inflammatory marker IL-6 as well as granulocyte-macrophage colony-stimulating factor (GM-CSF) secretion. Based on these results, STVNA proves to be beneficial as a possible prevention and treatment modality for brain ischemia-reperfusion injury-induced blood–brain barrier (BBB) dysfunction.
ISSN:1999-4923
1999-4923
DOI:10.3390/pharmaceutics14091753