Anti-Hebbian plasticity drives sequence learning in striatum

Spatio-temporal activity patterns have been observed in a variety of brain areas in spontaneous activity, prior to or during action, or in response to stimuli. Biological mechanisms endowing neurons with the ability to distinguish between different sequences remain largely unknown. Learning sequence...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Communications biology 2024-05, Vol.7 (1), p.555-21, Article 555
Hauptverfasser: Vignoud, Gaëtan, Venance, Laurent, Touboul, Jonathan D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Spatio-temporal activity patterns have been observed in a variety of brain areas in spontaneous activity, prior to or during action, or in response to stimuli. Biological mechanisms endowing neurons with the ability to distinguish between different sequences remain largely unknown. Learning sequences of spikes raises multiple challenges, such as maintaining in memory spike history and discriminating partially overlapping sequences. Here, we show that anti-Hebbian spike-timing dependent plasticity (STDP), as observed at cortico-striatal synapses, can naturally lead to learning spike sequences. We design a spiking model of the striatal output neuron receiving spike patterns defined as sequential input from a fixed set of cortical neurons. We use a simple synaptic plasticity rule that combines anti-Hebbian STDP and non-associative potentiation for a subset of the presented patterns called rewarded patterns. We study the ability of striatal output neurons to discriminate rewarded from non-rewarded patterns by firing only after the presentation of a rewarded pattern. In particular, we show that two biological properties of striatal networks, spiking latency and collateral inhibition, contribute to an increase in accuracy, by allowing a better discrimination of partially overlapping sequences. These results suggest that anti-Hebbian STDP may serve as a biological substrate for learning sequences of spikes. Mathematical models and computer simulations suggest that anti-Hebbian STDP, the type of plasticity observed between cortex and striatum, could support the learning of sequences in the brain.
ISSN:2399-3642
2399-3642
DOI:10.1038/s42003-024-06203-8