Greedy sensor selection based on QR factorization

We address the problem of selecting a given number of sensor nodes in wireless sensor networks where noise-corrupted linear measurements are collected at the selected nodes to estimate the unknown parameter. Noting that this problem is combinatorial in nature and selection of sensor nodes from a lar...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:EURASIP journal on advances in signal processing 2021-12, Vol.2021 (1), p.1-13, Article 117
1. Verfasser: Kim, Yoon Hak
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We address the problem of selecting a given number of sensor nodes in wireless sensor networks where noise-corrupted linear measurements are collected at the selected nodes to estimate the unknown parameter. Noting that this problem is combinatorial in nature and selection of sensor nodes from a large number of nodes would require unfeasible computational cost, we propose a greedy sensor selection method that seeks to choose one node at each iteration until the desired number of sensor nodes are selected. We first apply the QR factorization to make the mean squared error (MSE) of estimation a simplified metric which is iteratively minimized. We present a simple criterion which enables selection of the next sensor node minimizing the MSE at iterations. We discuss that a near-optimality of the proposed method is guaranteed by using the approximate supermodularity and also make a complexity analysis for the proposed algorithm in comparison with different greedy selection methods, showing a reasonable complexity of the proposed method. We finally run extensive experiments to investigate the estimation performance of the different selection methods in various situations and demonstrate that the proposed algorithm provides a good estimation accuracy with a competitive complexity when compared with the other novel greedy methods.
ISSN:1687-6180
1687-6172
1687-6180
DOI:10.1186/s13634-021-00824-5